# **URS SERIES**

www.DanaherMotion.com



## COMPACT BALLSCREW POSITIONING TABLES

The IDC URS-series with integrated steel rail provides superior product performance in a compact package.





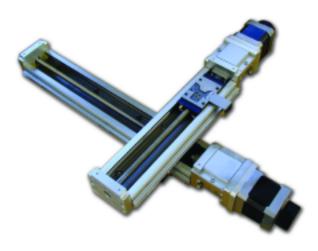
IDC

While business cycles will ebb and flow, technological advancements across a multitude of industries march forward. In many cases, the success of these advancements hinges upon the ability of engineers to create automated systems capable of accurately manipulating materials at both the macro and microscopic levels. Danaher Motion solutions are often at the core of these systems. Many recent advancements in the semiconductor, flat panel display, data storage, digital imaging, transportation, machine automation, and life sciences markets have been made possible by actuators and positioning systems designed and manufactured by Danaher Motion.

IDC offers an expansive range of mechanical and control products for automated positioning applications. Our customers turn to us for complete solutions to their automation needs. Our products are found in a wide variety of industrial, scientific, and commercial applications. Virtually anywhere that thrust, torque, speed, or position must be controlled, IDC has the solution. Our electro-mechanical product offering is highlighted by our standard product range of Electric Cylinders, Rodless Actuators, and Precision Positioning Tables.

**Electric Cylinders** are essentially thrust producing devices that are best suited for applications requiring high axial force with the moment and side loads already properly supported.

Screw driven **Rodless Actuators** are also thrust producing devices that are best for axial force applications where the space is limited and a payload must also be supported or carried. As individual components, Rodless Actuators are not well suited for moment loading; however, they can be effectively combined into complete Cartesian Systems for some multi-axis applications. For higher speed, lower thrust applications, Rodless Actuators can be repeatably driven with a timing belt instead of a screw.


**Precision Positioning Tables** are best suited for applications where the accuracy and repeatability requirements are more important than axial thrust of the drive train. Precision Positioning Tables can also be used in less precise applications where adequate moment load support is necessary. Precision Positioning Tables are ideal building blocks for complete multi-axis positioning systems.

Our IDC product brand contains hundreds of standard electro-mechanical solutions. Still, we recognize that each application is unique and so we continue to welcome opportunities that require modification and occasionally complete redesign of our standard solutions.

Contact Danaher Motion today to discuss how we can put our trusted brand names, extensive product portfolio, and extensive applications expertise to work to provide you with your total motion control solution.



URS 3305A-150-X2345 Positioning Table



XY featuring URS20 Positioning Tables.

Consult factory for multi-axis configurations.



DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and

## **TABLE OF CONTENTS:**

**IDC** 

| Welcome to Danaher Motion – IDC Inside Front Cov |
|--------------------------------------------------|
| Table of Contents                                |
| URS Overview                                     |
| Specifications                                   |
| URS20                                            |
| URS26                                            |
| URS33                                            |
| URS46                                            |
| URS55                                            |
| Dimensional Drawings                             |
| URS20                                            |
| URS26                                            |
| URS33                                            |
| URS46                                            |
| URS55                                            |
| Motor Options                                    |
| Flanges for Customer Mounted Motors              |
| Stepper Motors                                   |
| Servo Motors                                     |
| Cleanroom Lubrication Option                     |
| Raydent Surface Treatment Option                 |
| Limit Switch Options                             |
| Inertia of the Carriage(s) and Ballscrews        |
| Accuracy Standards                               |
| Rated Life Calculations3                         |
| Part Numbering/Ordering Information              |
| Configuration Guide                              |
| Lubrication and Operation Notes                  |

#### URS = U RAIL SYSTEM.

The URS is a compact single-axis positioning table which integrates a linear bearing and precision ballscrew.

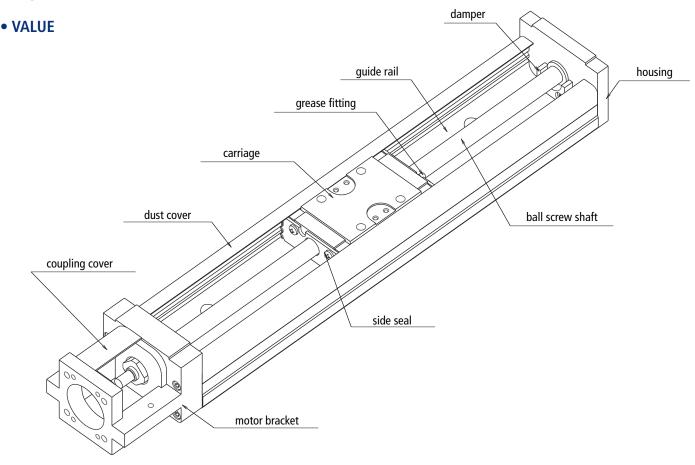
The URS series offers compact dimensions and outperforms conventional positioning tables. This is made possible by a unique "U" shaped guide rail, and a recirculating bearing module which provides the dual functions of a guide block and a ball screw nut. The "U" shaped guide rail design offers a highly rigid structure resistant to bending, allowing the URS to be single-end supported. Additionally, the bearing module contains four ball circuits which deliver high load capacity, high accuracy and high rigidity.

- COMPACT SIZE
- OPTIMIZED DESIGN
- RIGIDITY

#### **Packaged Solution:**

The integration of the slide guide and precision ballscrew eliminates complex precision adjustment and reduces installation time dramatically as compared to purchasing and assembling individual components.

#### **High Rigidity:**


"U" shaped steel guide rail provides very high rigidity despite its compact profile, and excels in one-end supported (cantilevered slide) applications.

#### **High Accuracy:**

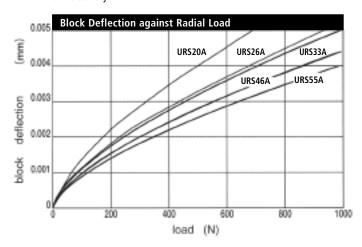
The URS shuttle carriage contains four ball circuits and four-point contact ball grooves, which contributes to its high rigidity. The combination of precision ground guide rail, carriage, and precision grade ball screw provides high positioning accuracy.

#### Space Saving:

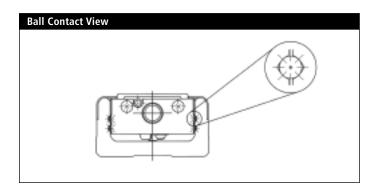
In comparison to conventional positioning tables, the compact design of the URS allows for dramatic space savings. The "U" shaped guide rail and integrated carriage/ballnut design make this possible.

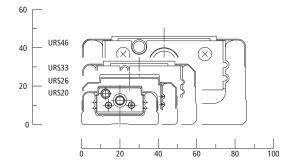


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.


Tel : 540 633 • 3400 Web

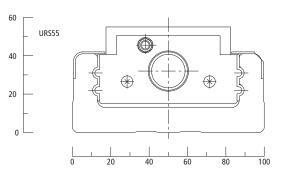
#### **URS-SERIES OVERVIEW**


The IDC URS-Series Positioning Tables provide superior product performance in a compact size envelope.


**IDC** 

 A precision ground steel base/rail provides exceptional rigidity and accuracy.




- The integrated linear bearing and precision ballscrew minimize the cross-sectional profile of the URS (see drawings below).
- The four-row linear bearing structure maximizes the rigidity of the carriage, and allows the URS to be mounted in any orientation.





#### **SELECTABLE OPTIONS & ACCESSORIES**

- Travel lengths from 43mm to 1134mm cover a wide range of applications.
- Standard- and short-version carriages, and single- and dual-carriage options increase flexibility of load carrying.
- Commercial Grade version with repeatability down to +/- 5 microns, and Precision Grade version with repeatability down to +/- 3 microns.
- Motor flanges for NEMA 16, 17, 23 and 34 frame motors.
- Standard servo and stepper motor options.
- Hardcover is available to protect internal components and to contain lubrication within the URS.
- Limit switch packages with three (3) sensors adjustable throughout the range of travel.
- Cleanroom grease option for particulate-sensitive environments.
- Raydent surface treatment option for improved rust-resistance of the steel rail.



DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

: 540

### **SPECIFICATIONS**

|                                                     |           | URS20 |      |      | UR   | S26  |              | URS33 |          |      |     |     |     |
|-----------------------------------------------------|-----------|-------|------|------|------|------|--------------|-------|----------|------|-----|-----|-----|
| RAIL LENGTH (mm)                                    | 100       | 150   | 200  | 150  | 200  | 250  | 300          | 150   | 200      | 300  | 400 | 500 | 600 |
| HEIGHT (base to carriage top)                       |           |       |      |      |      |      |              |       |          |      |     |     |     |
| without cover option (mm)                           |           | 20    |      |      | 2    | 6    |              |       |          | 3    | 3   |     |     |
| without cover option [-H] (mm)                      |           | 32    |      |      |      | 0    |              |       |          | 4    | 8   |     |     |
| BASE WIDTH (mm)                                     |           | 40    |      | 50   |      |      |              |       | 6        |      |     |     |     |
| MAX TRAVEL (hardstop to hardstop)                   |           |       |      |      |      |      |              |       |          | -    | -   |     |     |
| single long carriage [A] (mm)                       | 43        | 93    | 143  | 74   | 124  | 174  | 224          | 60    | 110      | 210  | 310 | 410 | 510 |
| dual long carriage [B] (mm)                         | _         | 50    | 100  | -    | 60   | 110  | 160          | -     | -        | 133  | 233 | 333 | 433 |
| single short carriage [C] (mm)                      | _         | _     | -    | _    | _    | -    | -            | 85    | 135      | 235  | 335 | 435 | 535 |
| dual short carriage [D] (mm)                        | _         | _     | _    | _    | _    | _    | <del> </del> | 34    | 84       | 184  | 284 | 384 | 484 |
| ACCURACY                                            |           |       |      |      |      |      | 1            | 31    | 01       | 101  | 201 | 301 | 101 |
| commercial grade (microns)                          |           | 50    |      |      | 5    | 0    |              | 3     | 0        | ] ;  | 5   | 40  | 70  |
| precision grade [P] (microns)                       |           | 20    |      |      |      | 0    |              | 1     |          |      | .0  | 25  | -   |
| FLATNESS OF TRAVEL                                  |           |       |      |      |      |      |              |       | <u> </u> |      | .0  |     |     |
| commercial grade (microns)                          |           | 25    |      |      | 2    | 5    |              |       | 25       |      |     | 35  |     |
| precision grade [P] (microns)                       |           | 10    |      |      |      | 0    |              |       | 10       |      |     | 15  |     |
| REPEATABILITY                                       |           | 10    |      |      | •    |      |              |       | 10       |      |     | 13  |     |
| commercial grade (microns)                          |           | ±5    |      |      | ±    | 5    |              |       |          | +    | :5  |     |     |
| precision grade [P] (microns)                       |           | ±3    |      |      |      |      |              |       |          |      | :3  |     |     |
| LOAD CAPACITY, NORMAL (kg)                          |           |       |      |      |      |      |              |       |          |      |     |     |     |
| commercial grade (kg)                               |           | 9     |      |      | 3    | 0    |              |       |          | 1,   | 40  |     |     |
| precision grade [P] (kg)                            |           | 9     |      |      |      | 0    |              |       |          |      | 10  |     |     |
| LOAD CAPACITY, AXIAL (kg)                           |           |       |      |      |      |      |              | 50    |          |      |     |     |     |
| commercial grade (kg)                               |           | 4.5   |      |      | 1    | 5    |              | 70    |          |      |     |     |     |
| precision grade [P] (kg)                            | 4.5 15 45 |       |      |      |      |      |              |       |          |      |     |     |     |
| ACCELERATION, MAX (m/sec²)                          | 20        |       |      |      |      | 0    |              |       |          |      | 0   |     |     |
| MOVING MASS                                         |           |       |      |      |      |      |              | 20    |          |      |     |     |     |
| long carriage [A,B] w/o cover option (kg)           |           | 0.07  |      |      | 0.   | 17   |              |       |          | 0.   | 30  |     |     |
| long carriage [A,B] w/ cover option [-H] (kg)       |           | 0.11  |      |      |      | 24   |              |       |          |      | 40  |     |     |
| short carriage [C,D] w/o cover option (kg)          |           | _     |      |      |      | -    |              |       |          | 0.   |     |     |     |
| short carriage [C,D] w/ cover option [-H] (kg)      |           | _     |      |      |      | _    |              |       |          |      | 20  |     |     |
| TOTAL MASS                                          |           |       |      |      |      |      |              |       |          |      |     |     |     |
| single long carriage [A] w/o cover option (kg)      | 0.42      | 0.58  | 0.71 | 0.93 | 1.14 | 1.36 | 1.57         | 1.6   | 2.0      | 2.6  | 3.2 | 3.9 | 4.6 |
| dual long carriage [B] w/o cover option (kg)        | 0.52      | 0.65  | 0.78 | 1.10 | 1.31 | 1.36 | 1.57         | _     | _        | 2.9  | 3.6 | 4.2 | 4.9 |
| single short carriage [C] w/o cover option (kg)     | _         | _     | _    | _    | _    | _    | -            | 1.5   | 1.8      | 2.5  | 3.1 | 3.8 | 4.4 |
| dual short carriage [D] w/o cover option (kg)       | -         | -     | _    | -    | -    | -    | -            | 1.7   | 2.0      | 2.7  | 3.3 | 3.9 | 4.6 |
| single long carriage [A] w/ cover option (kg)       | 0.50      | 0.63  | 0.77 | 1.07 | 1.30 | 1.53 | 1.76         | 1.8   | 2.1      | 2.8  | 3.5 | 4.2 | 4.9 |
| dual long carriage [B] w/ cover option (kg)         | 0.61      | 0.74  | 0.88 | 1.31 | 1.54 | 1.78 | 2.01         | _     | _        | 3.2  | 3.9 | 4.6 | 5.3 |
| single short carriage [C] w/ cover option [-H] (kg) | _         | -     | -    | -    | -    | _    | -            | 1.6   | 2.0      | 2.6  | 3.3 | 4.0 | 4.7 |
| dual short carriage [D] w/ cover option [-H] (kg)   | -         | _     | _    | -    | -    | -    | -            | 1.9   | 2.2      | 2.9  | 3.5 | 4.2 | 4.9 |
| BALL SCREW DIAMETER (mm)                            |           | 6     |      |      |      | 8    |              |       | ·        | 1    | 0   |     |     |
| DUTY CYCLE (%)                                      |           | 100   |      |      | 10   | 00   |              |       |          | 1    | 00  |     |     |
| BALLSCREW EFFICIENCY (%)                            |           | 90    |      |      | 9    | 0    |              | 90    |          |      |     |     |     |
| MAX BREAKAWAY TORQUE                                |           |       |      |      |      |      |              |       |          |      |     |     |     |
| commercial grade (oz-in)                            |           | 0.7   |      |      | 2    | .1   |              | 9.9   |          |      |     |     |     |
| precision grade [P] (oz-in)                         |           | 1.7   |      |      | 5    | .7   |              |       |          | 21.2 |     |     | _   |
| BALLSCREW LEADS AVAILABLE (mm)                      |           | 1, 5  |      | 2,5  |      |      |              |       |          |      |     |     |     |
| BACKLASH                                            |           |       |      | •    |      |      |              |       |          |      |     |     |     |
| commercial grade (microns)                          |           | 10    |      |      | 1    | 0    |              |       |          | 1    | 0   |     |     |
| precision grade [P] (microns)                       |           | 3     |      |      | 3    | 3    |              |       |          | 3    |     |     | _   |
| MAX BALLSCREW SPEED (rev/sec)                       |           | 187   |      |      | 14   | 10   |              |       | 11       | 10   |     | 93  | 62  |

#### [ ] Indicates option code

Load capacities specified above are based upon a life rating of 2,100 kilometers (82 million inches) of table travel. Actual life/load is dependent on many attributes, including screw lead and moment load. Life calculation formulas are available on page 30 of this Selection Guide, or use our URS load calculator available at www.danahermotion.com/URS.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

: 540 633 • 3400



5

#### **SPECIFICATIONS**

**IDC** 

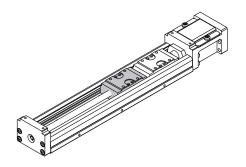
|                                                         | URS46                                   |      |      |          |      | URS55 |      |     |      |      |        |
|---------------------------------------------------------|-----------------------------------------|------|------|----------|------|-------|------|-----|------|------|--------|
| RAIL LENGTH (mm)                                        | 340                                     | 440  | 540  | 640      | 740  | 840   | 940  | 980 | 1080 | 1180 | 1280   |
|                                                         | 340                                     | 440  | 340  | 040      | 740  | 040   | 940  | 300 | 1000 | 1100 | 1200   |
| HEIGHT (base to carriage top) without cover option (mm) |                                         |      |      | 16       |      |       |      | l   |      | i5   |        |
|                                                         |                                         |      |      | 46       |      |       |      |     |      |      |        |
| without cover option [-H] (mm)                          |                                         |      |      | 68<br>86 |      |       |      | 80  |      |      |        |
| BASE WIDTH (mm)                                         |                                         |      |      | 00       |      |       |      |     | - 10 | 00   |        |
| MAX TRAVEL (hardstop to hardstop)                       | 200                                     | 200  | 400  | F00      | 500  | 700   | 000  | 024 | 024  | 4024 | 4424   |
| single long carriage [A] (mm)                           | 209                                     | 309  | 409  | 509      | 609  | 709   | 809  | 834 | 934  | 1034 | 1134   |
| dual long carriage [B] (mm)                             | 100                                     | 200  | 300  | 400      | 500  | 600   | 700  | 711 | 811  | 911  | 1011   |
| single short carriage [C] (mm)                          | 245                                     | 345  | 445  | 545      | 645  | 745   | 845  | -   | _    | -    | _      |
| dual short carriage [D] (mm)                            | 172   272   372   472   572   672   772 |      |      |          |      | 112   | _    | _   | _    | _    |        |
| ACCURACY                                                |                                         | ·-   | 1 .  | •        | F0.  |       | •    |     |      | 1 4  |        |
| commercial grade (microns)                              |                                         | 85   |      | 0        | 50   |       | 0    |     | 30   |      | )0<br> |
| precision grade [P] (microns)                           |                                         | 20   | 2    | 5        | 30   | _     | -    | ] 3 | 15   | 40   | _      |
| FLATNESS OF TRAVEL                                      |                                         |      | 25   |          | 40   | -     | ^    | 1   |      |      |        |
| commercial grade (microns)                              | 45                                      |      | 35   |          | 40   | 5     |      |     |      | 50   | I      |
| precision grade [P] (microns)                           | 15                                      |      | 20   |          | -    | 2     | )    |     |      | 30   | _      |
| REPEATABILITY                                           |                                         |      |      |          |      |       |      |     |      |      |        |
| commercial grade (microns)                              |                                         |      |      | ±5       |      |       |      |     |      | :5   |        |
| precision grade [P] (microns)                           |                                         |      |      | ±3       |      |       |      |     | ±5   |      |        |
| LOAD CAPACITY, NORMAL (kg)                              |                                         |      |      |          |      |       |      | ı   |      |      |        |
| commercial grade (kg)                                   | 250 530                                 |      |      |          |      |       |      |     |      |      |        |
| precision grade (kg)                                    | 160 400                                 |      |      |          |      |       |      |     |      |      |        |
| LOAD CAPACITY, AXIAL (kg)                               |                                         |      |      |          |      |       |      |     |      |      |        |
| commercial grade (kg)                                   | 125 265                                 |      |      |          |      |       |      |     |      |      |        |
| precision grade [P] (kg)                                | 80 200                                  |      |      |          |      |       |      |     |      |      |        |
| ACCELERATION, MAX (m/sec²)                              |                                         |      |      | 20       |      |       |      |     | 2    | .0   |        |
| MOVING MASS                                             |                                         |      |      |          |      |       |      |     |      |      |        |
| long carriage [A,B] w/o cover option (kg)               |                                         |      |      | 0.9      |      |       |      |     | 1.   |      |        |
| long carriage [A,B] w/ cover option [-H] (kg)           |                                         |      |      | 1.2      |      |       |      | 2.3 |      |      |        |
| short carriage [C,D] w/o cover option (kg)              |                                         |      |      | 0.5      |      |       |      |     | _    |      |        |
| short carriage [C,D] w/ cover option [-H] (kg)          |                                         |      |      | 0.7      |      |       |      |     | -    | _    |        |
| TOTAL MASS                                              |                                         |      |      |          |      |       |      |     |      |      |        |
| single long carriage [A] w/o cover option (kg)          | 6.5                                     | 8.0  | 9.0  | 10.5     | 12.0 | 13.0  | 14.5 | 20  | 22   | 23   | 25     |
| dual long carriage [B] w/o cover option (kg)            | 7.5                                     | 8.5  | 10.0 | 11.5     | 13.0 | 14.0  | 15.5 | 22  | 24   | 25   | 27     |
| single short carriage [C] w/o cover option (kg)         | 6.0                                     | 7.5  | 8.5  | 10.0     | 11.5 | 13.0  | 14.0 | -   | -    | -    | -      |
| dual short carriage [D] w/o cover option (kg)           | 6.5                                     | 8.0  | 9.5  | 10.5     | 12.0 | 13.5  | 14.5 | -   | _    | _    | -      |
| single long carriage [A] w/ cover option (kg)           | 7.0                                     | 8.5  | 10.0 | 11.0     | 12.5 | 14.0  | 15.5 | 21  | 23   | 25   | 27     |
| dual long carriage [B] w/ cover option (kg)             | 8.0                                     | 9.5  | 11.0 | 12.5     | 14.0 | 15.5  | 16.5 | 24  | 26   | 27   | 29     |
| single short carriage [C] w/ cover option [-H] (kg)     | 6.5                                     | 8.0  | 9.5  | 10.5     | 12.0 | 13.5  | 15.0 | -   | _    | _    | -      |
| dual short carriage [D] w/ cover option [-H] (kg)       | 7.0                                     | 8.5  | 10.0 | 11.5     | 13.0 | 14.0  | 15.5 | -   | _    | _    | _      |
| BALL SCREW DIAMETER (mm)                                |                                         |      |      | 15       |      |       |      |     |      | 0    |        |
| DUTY CYCLE (%)                                          |                                         |      |      | 100      |      |       |      |     | 10   | 00   |        |
| BALLSCREW EFFICIENCY (%)                                |                                         |      |      | 90       |      |       |      |     | 9    | 0    |        |
| MAX BREAKAWAY TORQUE                                    |                                         |      |      |          |      |       |      |     |      |      |        |
| commercial grade (oz-in)                                | 14.2 17.0                               |      |      |          |      |       |      |     |      |      |        |
| precision grade [P] (oz-in)                             |                                         | 21.2 |      | 24       | .0   | _     |      | 24  | 1.0  | 28.3 | _      |
| BALLSCREW LEADS AVAILABLE (mm)                          |                                         |      |      | 10, 20   |      |       |      |     |      | 20   |        |
| BACKLASH                                                |                                         |      |      |          |      |       |      |     |      |      |        |
| commercial grade (microns)                              |                                         |      |      | 10       |      |       |      |     |      | 50   |        |
| precision grade [P] (microns)                           |                                         |      | 3    |          |      | -     |      |     | 3    |      | -      |
| MAX BALLSCREW SPEED (rev/sec)                           |                                         | 74   | 4    |          | 65   | 50    | 39   | 56  | 45   | 37   | 31     |

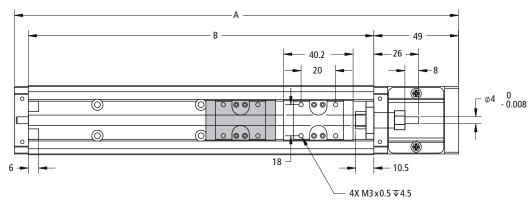
All performance specifications are based upon proper mounting procedures, with the URS fully supported on a flat surface (flat within v0.008mm/300mm).

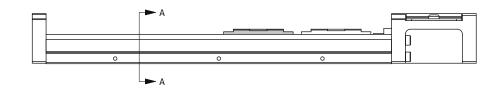
Above specifications are measured 37.5mm directly above the center of the carriage.

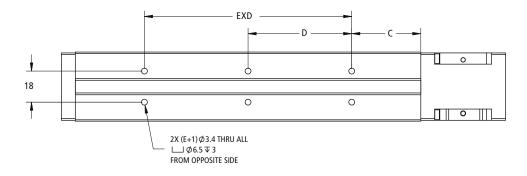
Specifications are based upon operation at 20° C. Contact IDC to discuss your low- and high-temperature applications.

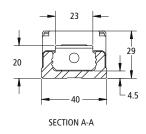
URS positioning tables are rated for normal loads (load vector directed down onto the surface of the carriage), for axial loads (load vector directed in the direction of travel), and for moment loads (torsional loads caused by loads with an offset center of gravity). The moment loading limits are based on the maximum moment in pitch, roll or yaw including any dynamic componeness that are move profile dependent. Visit www.DanaherMotion.com/urs to use our moment loading calculator.

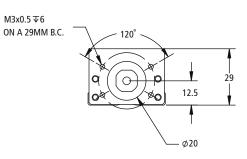

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.


: 540 633 • 3400 Web site : www.DanaherMotion.com


<sup>\*</sup> The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of IDC products for a specific application. Specifications are subject to change without notice.


## Without Cover Option

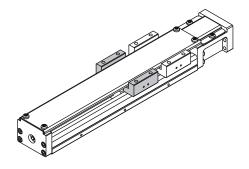

Note: Optional second carriage shaded gray.

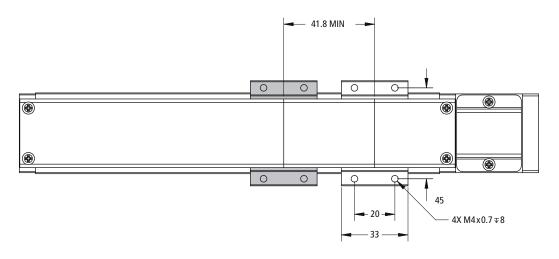


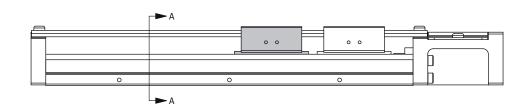


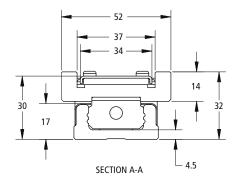




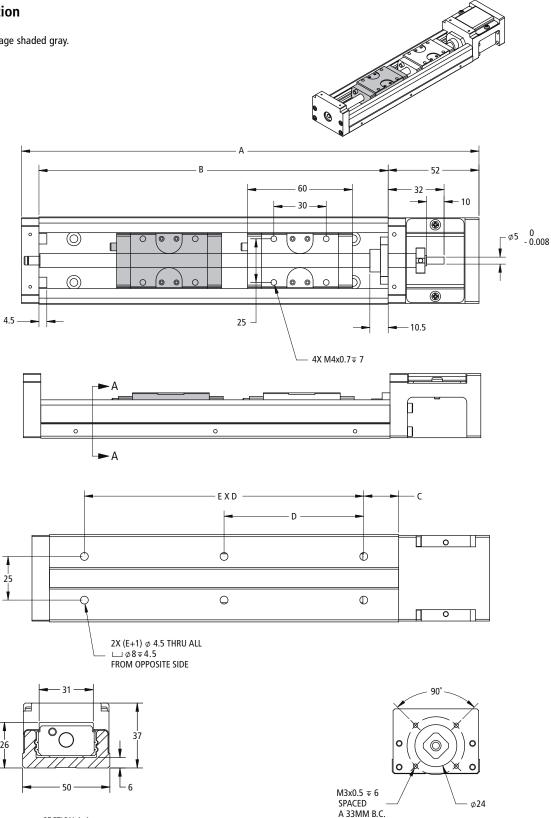


**IDC** 


### With Cover Option

Note: Optional second carriage shaded gray.









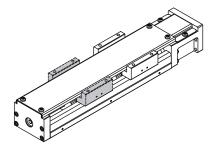

|     |     |    | Stroke Limit |   |          |          |
|-----|-----|----|--------------|---|----------|----------|
| Α   | В   | С  | D            | E | URS20**A | URS20**B |
| 100 | 157 | 20 |              | 1 | 43       | -        |
| 150 | 207 | 15 | 60           | 2 | 93       | 50       |
| 200 | 257 | 40 |              |   | 143      | 100      |

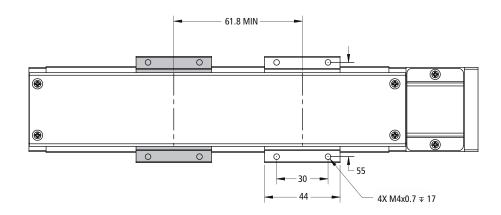
### **Without Cover Option**

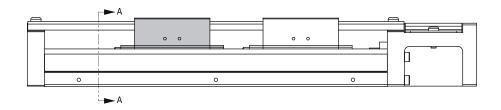
Note: Optional second carriage shaded gray.

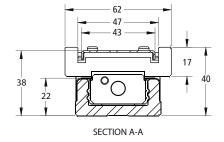


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.


SECTION A-A


**IDC** 

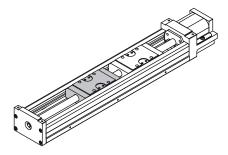

## **URS26 DIMENSIONAL DRAWING**

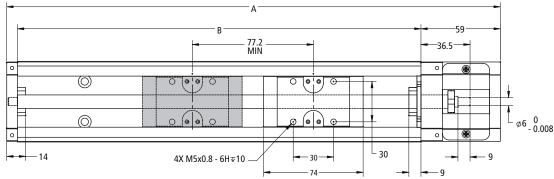

### With Cover Option

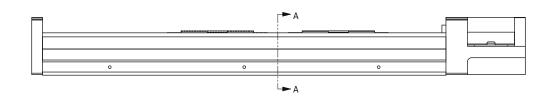
Note: Optional second carriage shaded gray.

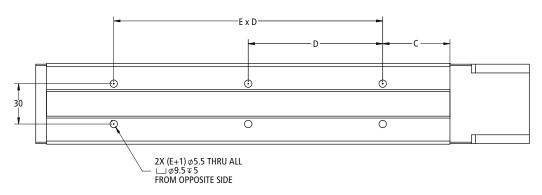


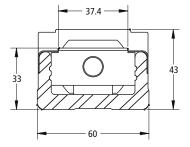


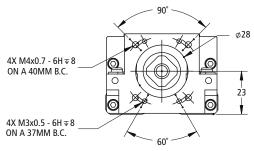




|     |     |    | Stroke Limit |   |        |        |
|-----|-----|----|--------------|---|--------|--------|
| Α   | В   | C  | D            | E | URS26A | URS26B |
| 150 | 212 | 35 |              | 1 | 73     | -      |
| 200 | 262 | 20 | 80           | 2 | 127    | 61     |
| 250 | 315 | 45 | 80           |   | 173    | 111    |
| 300 | 362 | 30 |              | 3 | 223    | 161    |


### Long Carriage(s) Without Cover Option

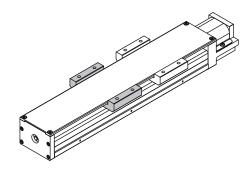

Note: Optional second carriage shaded gray.

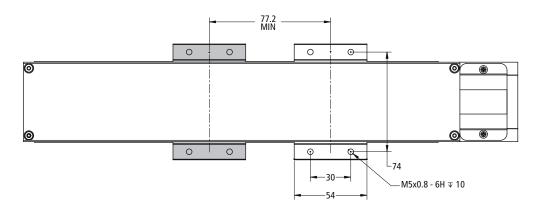


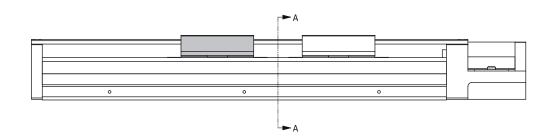


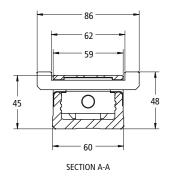




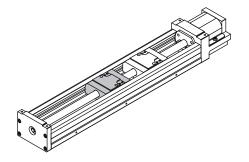


**IDC** 

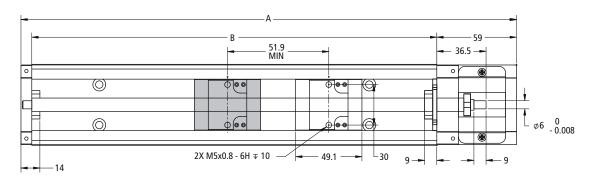

## Long Carriages(s) With Cover Option

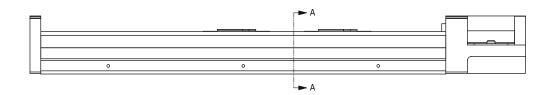
Note: Optional second carriage shaded gray.

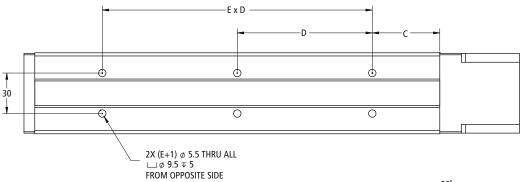


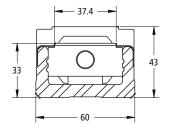


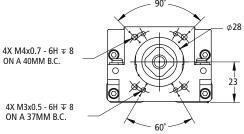




|     | D   |    | Stroke Limit |   |          |          |
|-----|-----|----|--------------|---|----------|----------|
| Α   | В   | С  | D            | E | URS33**A | URS33**B |
| 217 | 150 | 25 |              | 1 | 60       | -        |
| 267 | 200 |    |              | ľ | 110      | ı        |
| 367 | 300 |    | 100          | 2 | 210      | 133      |
| 467 | 400 | 50 | 100          | 3 | 310      | 233      |
| 567 | 500 |    |              | 4 | 410      | 333      |
| 667 | 600 |    |              | 5 | 510      | 433      |

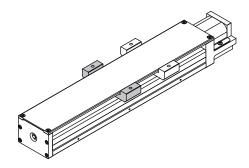

#### **Short Carriage(s) Without Cover Option**

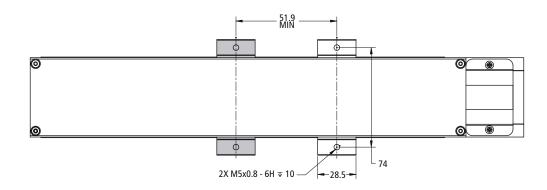

Note: Optional second carriage shaded gray.

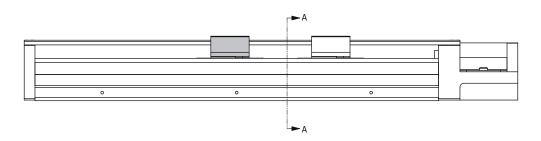


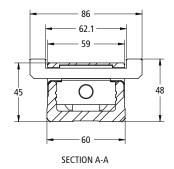




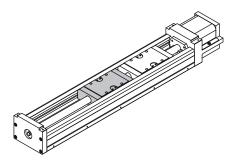



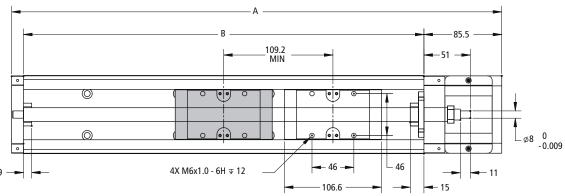


## **Short Carriage(s) With Cover Option**

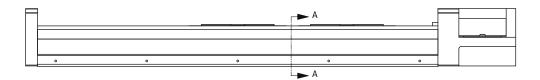
Note: Optional second carriage shaded gray.



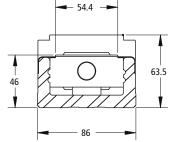


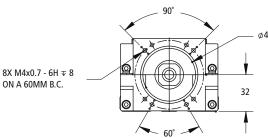




|     |     |    | Stroke Limit |   |          |          |
|-----|-----|----|--------------|---|----------|----------|
| Α   | В   | C  | D            | E | URS33**C | URS33**D |
| 217 | 150 | 25 |              | 1 | 85       | 34       |
| 267 | 200 |    |              |   | 135      | 84       |
| 367 | 300 |    | 100          | 2 | 235      | 184      |
| 467 | 400 | 50 | 100          | 3 | 335      | 284      |
| 567 | 500 |    |              | 4 | 435      | 384      |
| 667 | 600 |    |              | 5 | 535      | 484      |

### Long Carriage(s) Without Cover Option

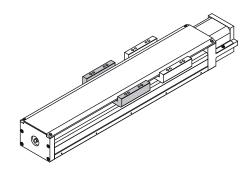

Note: Optional second carriage shaded gray.

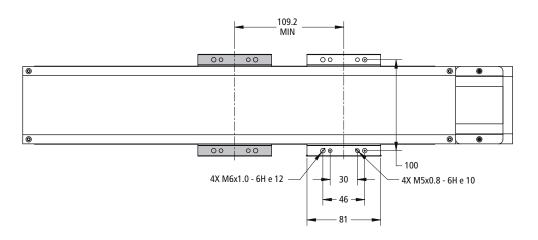


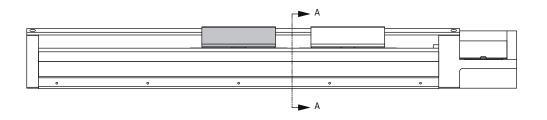


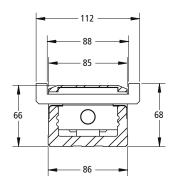




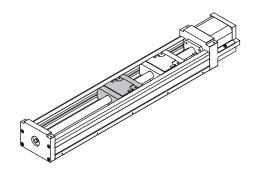



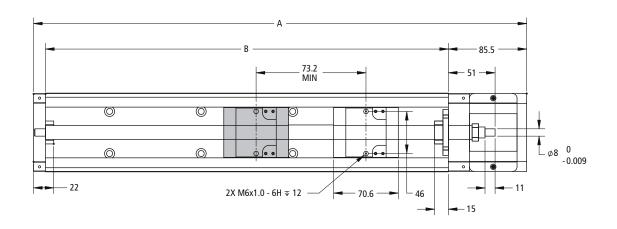


## Long Carriage(s) With Cover Option

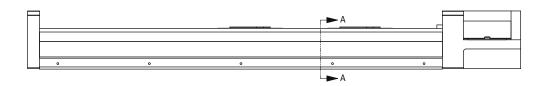
Note: Optional second carriage shaded gray.

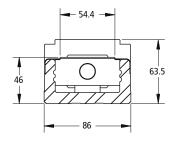


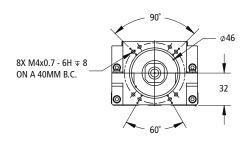




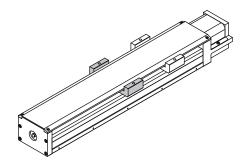


|        |     |    | Stroke Limit |       |          |          |
|--------|-----|----|--------------|-------|----------|----------|
| Α      | В   | С  | D            | E     | URS46**A | URS46**B |
| 438.5  | 340 |    |              | 2     | 209      | 100      |
| 538.5  | 440 |    |              | 3     | 309      | 200      |
| 638.5  | 540 |    | 4            | 409   | 300      |          |
| 738.5  | 640 | 70 | 100          | 5 509 | 509      | 400      |
| 838.5  | 740 |    |              | 6     | 609      | 500      |
| 938.5  | 840 |    |              | 7     | 709      | 600      |
| 1038.5 | 940 |    |              | 8     | 809      | 700      |

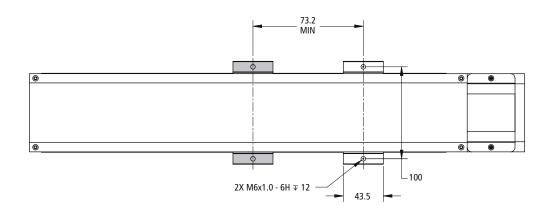

### **Short Carriage(s) Without Cover Option**

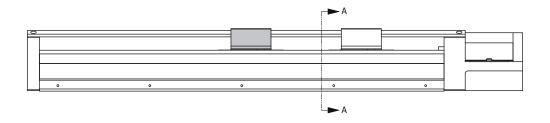

Note: Optional second carriage shaded gray.

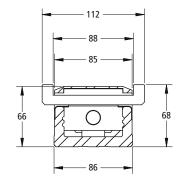






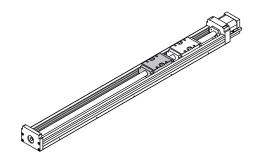



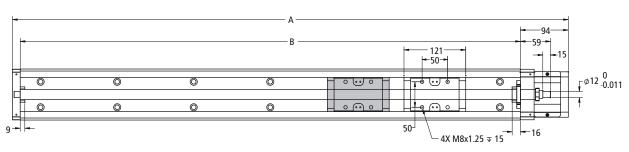


## **Short Carriage(s) With Cover Option**

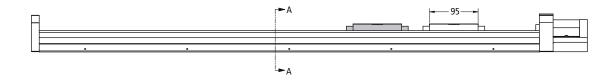
Note: Optional second carriage shaded gray.

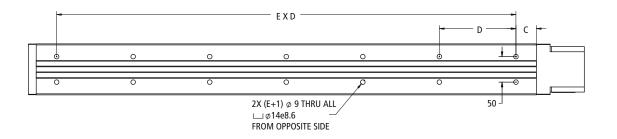


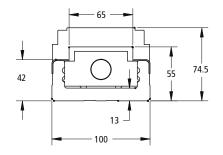


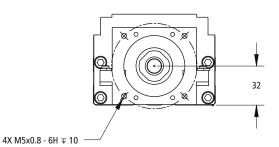




|        |     |    | Stroke | Limit |          |          |
|--------|-----|----|--------|-------|----------|----------|
| Α      | В   | C  | D      | E     | URS46**C | URS46**D |
| 438.5  | 340 |    |        | 2     | 245      | 172      |
| 538.5  | 440 |    |        | 3     | 345      | 272      |
| 638.5  | 540 |    |        | 4     | 445      | 372      |
| 738.5  | 640 | 70 | 100    | 100 5 | 545      | 472      |
| 838.5  | 740 |    |        |       | 645      | 572      |
| 938.5  | 840 |    |        | 7     | 745      | 672      |
| 1038.5 | 940 |    |        | 8     | 845      | 772      |


### **Without Cover Option**

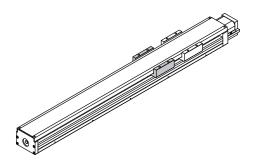

Note: Optional second carriage shaded gray.

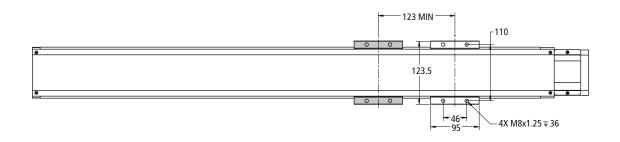


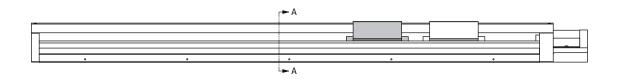


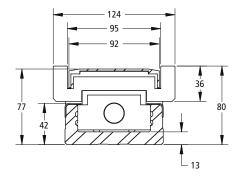






#### With Cover Option

Note: Optional second carriage shaded gray.

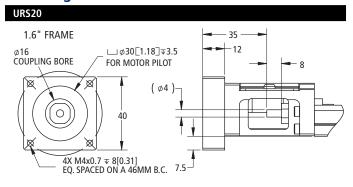




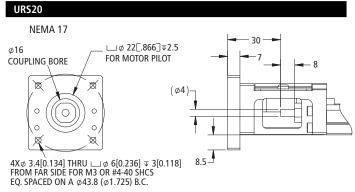




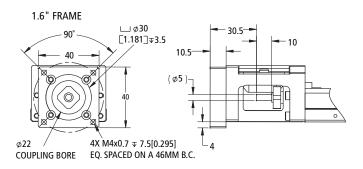
|      |      |    | Stroke Limit |   |          |          |
|------|------|----|--------------|---|----------|----------|
| Α    | В    | С  | D            | E | URS55**A | URS55**B |
| 980  | 1089 | 40 |              | 6 | 834      | 711      |
| 1080 | 1189 | 15 |              | 7 | 934      | 811      |
| 1180 | 1289 | 65 | 150          | , | 1034     | 911      |
| 1280 | 1389 | 40 |              | 8 | 1134     | 1011     |
| 1380 | 1489 | 15 |              | 9 | 1234     | 1111     |


#### **MOTOR FLANGE OPTIONS**

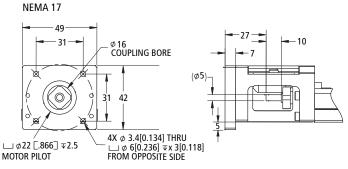
#### **SELECTION CHART**


|                         | X16     | X17     | X23     | X34     |
|-------------------------|---------|---------|---------|---------|
| Motor Flange Ref (1)    | NEMA 16 | NEMA 17 | NEMA 23 | NEMA 34 |
| Encoder Resolution      | -       | -       | -       | -       |
| Motor Brake Description | -       | -       | -       | -       |
| URS20                   |         |         |         |         |
| URS26                   |         | •       |         |         |
| URS33                   |         |         |         |         |
| URS46                   |         |         |         |         |
| URS55                   |         |         |         |         |

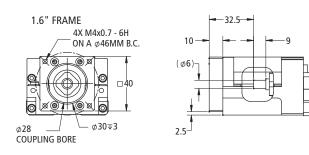
<sup>(1)</sup> Flange/motor dimensions may not be "true" NEMA; Reference drawings provided in this brochure.


#### X16 Flanges

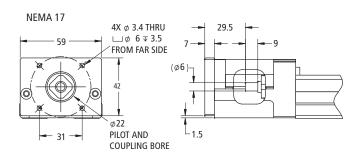



## X17 Flanges




#### URS26



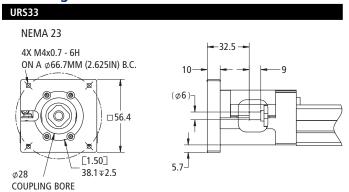

## URS26



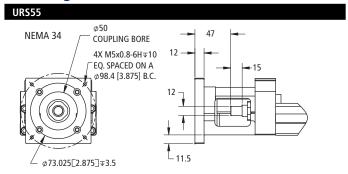
#### URS33



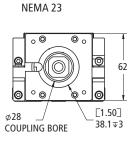
#### URS33

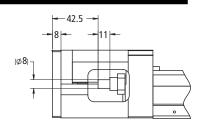



DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

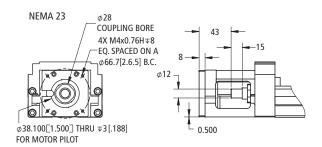

20

#### IDC


#### X23 Flanges




#### X34 Flanges










#### URS55



#### **MODELS ON DEMAND:**

Leading edge system for configuring and downloading 3D solid models and 2D drawings.

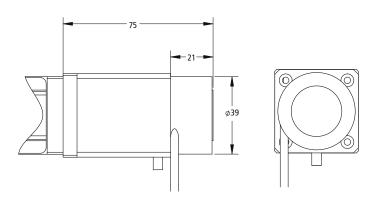
- Configure a URS to specific requirements including rail length, motor mounting, cover and limit options.
- Rule-based system prevents misconfiguring a model.
- Currently offers fifty-two downloadable CAD formats (3D/2D).
- View 3D model online with zoom, pan and rotate features.
- Real-time downloads (no large emails or FTP sites).

#### www.DanaherMotion.com/URS

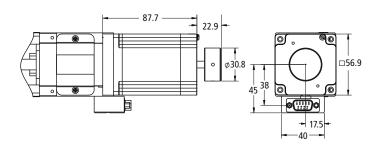


### **STEPPER MOTOR OPTIONS**

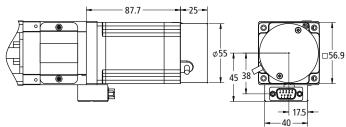
#### **SELECTION CHART**


|                         | T12     | T12EM/T12EMK   | T22x    | T22xEM/T22xEMK | T32x    | T32xEM/T32xEMK |
|-------------------------|---------|----------------|---------|----------------|---------|----------------|
| Motor Flange Reference  | NEMA 17 | NEMA 17        | NEMA 23 | NEMA 23        | NEMA 34 | NEMA 34        |
| Encoder Resolution      | -       | 500/1000 lines | -       | 500/1000 lines | -       | 500/1000 lines |
| Motor Brake Description | -       | -              | -       | -              | -       | -              |
| URS20                   |         |                |         |                |         |                |
| URS26                   |         |                |         |                |         |                |
| URS33                   |         |                |         |                |         |                |
| URS46                   |         |                |         |                |         |                |
| URS55                   |         |                | •       |                |         |                |

EM = 500 line encoder option EMK = 1000 line encoder option


#### **T12**

## 

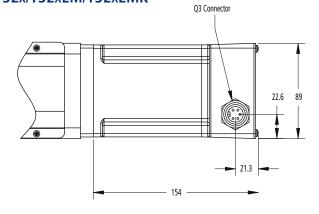

#### T12EM/T12EMK

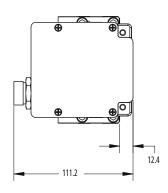


#### **T22**x



#### T22xEM/T22xEMK





23

**IDC** 

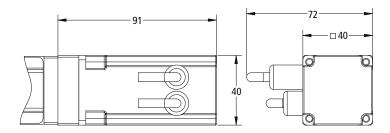
| Specification                  | Units             | T12                              | T22T                            | T22V                            | T32T                             | T32V                             |
|--------------------------------|-------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|
| Holding Torque                 | N-m (oz-in)       | 0.32 (45)                        | 1.52 (215)                      | 1.52 (215)                      | 8.5 (1206)                       | 8.5 (1206)                       |
| Rated Continuous Current/Phase | А                 | 1.2                              | 0.77                            | 1.50                            | 1.58                             | 3.3                              |
| Phase Inductance (+/- 20%)     | mH/phase          | 2.8                              | 65.5                            | 17                              | 120                              | 30                               |
| Weight                         | kg (lb)           | 0.35 (0.8)                       | 1.0 (2.3)                       | 1.0 (2.3)                       | 3.81 (8.4)                       | 3.81 (8.4)                       |
| Rotor Inertia                  | kg-cm² (lb-in-s²) | 0.068 (6.02 x 10 <sup>-5</sup> ) | 0.408 (3.5 x 10 <sup>-4</sup> ) | 0.408 (3.5 x 10 <sup>-4</sup> ) | .038 (0.268 x 10 <sup>-3</sup> ) | .038 (0.268 x 10 <sup>-3</sup> ) |

### T32x/T32xEM/T32xEMK

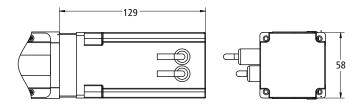




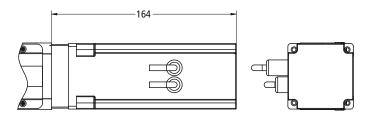
DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.


Tel : 540 633 • 3400 Web site : www.DanaherMotion.com

### **SERVO MOTOR OPTIONS**


#### **SELECTION CHART**

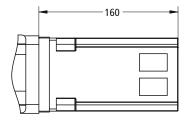
|                         | BK11              | BK22              | BK22B             | BK22S   | BK22SB           | BK32              | BK32B             |
|-------------------------|-------------------|-------------------|-------------------|---------|------------------|-------------------|-------------------|
| Motor Flange Reference  | NEMA 16           | NEMA 23           | NEMA 23           | NEMA 23 | NEMA 23          | NEM A 34          | NEMA 34           |
| Feedback                | 2048 line encoder | 2048 line encoder | 2048 line encoder | SFD     | SFD              | 2048 line encoder | 2048 line encoder |
| Motor Brake Description | -                 | -                 | 24 VDC Power-off  | -       | 24 VDC Power-off | -                 | 24 VDC Power-off  |
| URS20                   |                   |                   |                   |         |                  |                   |                   |
| URS26                   |                   |                   |                   |         |                  |                   |                   |
| URS33                   |                   |                   |                   |         |                  |                   |                   |
| URS46                   |                   |                   |                   |         |                  |                   |                   |
| URS55                   |                   | •                 | •                 |         |                  | •                 | •                 |

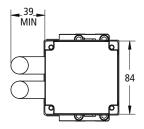

#### **BK11**



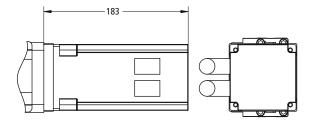
#### BK22/BK22S




#### BK22B/BK23SB




#### **SERVO MOTOR PARAMETERS**


| Specification             | Units                 | BK11                            | BK22                           | BK22B            | BK32                          | BK32B                           |
|---------------------------|-----------------------|---------------------------------|--------------------------------|------------------|-------------------------------|---------------------------------|
| Continuous Stall Torque   | N-m (oz-in)           | 0.185 (26)                      | 0.84 (119)                     | 0.83 (117)       | 3.43 (486)                    | 3.17 (449)                      |
| Peak Torque               | N-m (oz-in)           | 0.614 (87)                      | 2.73 (386)                     | 2.73 (386)       | 11.5 (1629)                   | 11.5 (1629)                     |
| Torque Sensitivity +/-10% | N-m/Arms (oz-in/Arms) | 0.129 (18.24)                   | 0.61 (86.4)                    | 0.61 (86.4)      | 0.74 (104)                    | 0.74 (104)                      |
| Back EMF +/- 10%          | Vrms/krpm             | 8.3                             | 39                             | 39               | 47.5                          | 47.5                            |
| Maximum Speed             | rpm                   | 6000                            | 8000                           | 8000             | 6000                          | 6000                            |
| Weight                    | kg (lb)               | 0.35 (0.8)                      | 1.1 (2.4)                      | 1.1 (2.4)        | 3.39 (7.5)                    | 3.39 (7.5)                      |
| Rotor Inertia             | kg-cm² (lb-in-s²)     | 0.017 (1.5 x 10 <sup>-5</sup> ) | 0.16 (1.4 x 10 <sup>-4</sup> ) | 0.17 (1.5 x 10⁴) | 1.5 (1.3 x 10 <sup>-3</sup> ) | 1.57 (1.31 x 10 <sup>-3</sup> ) |

#### **BK42**

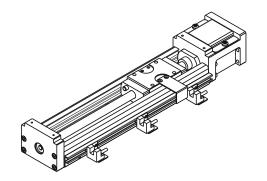




#### **BK42B**

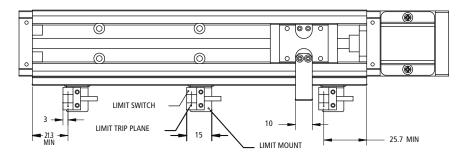


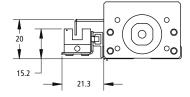
#### **CLEANROOM LUBRICATION OPTION**


The "GK" lubrication option is a low-particulate generating lubricant suitable for cleanroom applications, with the same lubrication and rust-preventing performance as the standard lithium-based grease. Operating range is –30°C to 150°C.

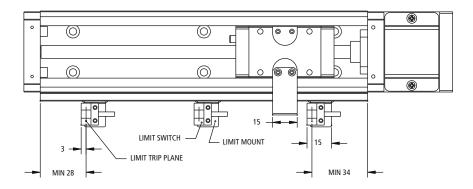
#### **RAYDENT SURFACE TREATMENT OPTION**

The "RD" option provides for Raydent treatment of the rail surfaces. Raydent is a proven, precisely applied thin rust-preventing film. The surface treatment has exceptional durability (greater than 10 years), and any fine grains of Raydent that do break away from the contact between the rail and recirculating balls will actually add to the lubricity of the grease.


#### **SENSOR OPTIONS**


All URS models are offered with optional Limit and Home Sensor packages. Sensors are recommended to prevent overtravel of the carriage and to provide a reliable index position. Each sensor package includes a T-slotted mounting rail and three (3) sensors. The Sensors are adjustable throughout the full travel range of the URS.




| Sensor Type       | Photoelectric     |
|-------------------|-------------------|
| Output Logic Type | NPN (sinking)     |
| Switch Type       | Normally Open     |
| Input Voltage     | 5 - 24 VDC +/-10% |
| Current Capacity  | 100mA             |
| Repeatability     | +/-15 microns     |

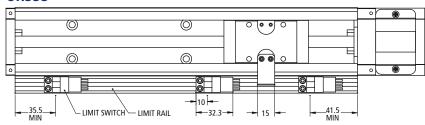

#### URS20



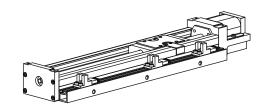


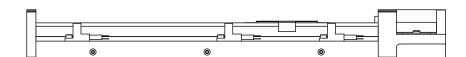
#### URS26

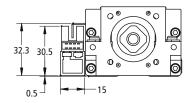




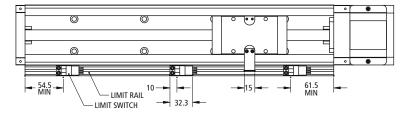

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

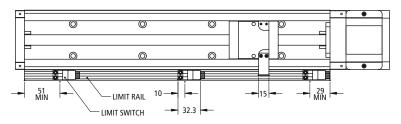

26 Tel : 540 633 • 3400

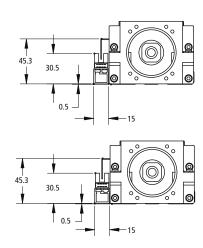




#### URS33

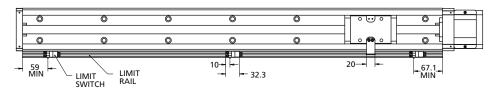


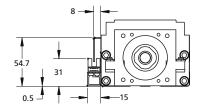

**IDC** 







#### **URS46**








#### **URS55**



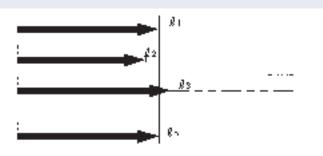


27

## **INERTIA OF THE CARRIAGES(S) AND BALLSCREW**

Inertia Value Units =  $1 \times 10^{-4} \text{ kg} \cdot \text{m}^2$ 

|            |             |               |             | top-cover     |             |               |             | op-cover      |             |            |
|------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|------------|
| base       | rail length | Long car      | riage (s)   | Short Ca      | arriage(s)  | Long car      | riage (s)   | Short Ca      | rriage(s)   | rail Lengt |
| model (mm) | (mm)        | single<br>[A] | dual<br>[B] | single<br>[C] | dual<br>[D] | single<br>[A] | dual<br>[B] | single<br>[C] | dual<br>[D] | mm         |
|            | 100         | 0.001         | 0.001       | _             | _           | 0.001         | 0.001       | _             | _           | 100        |
| URS2001    | 150         | 0.002         | 0.002       | _             | _           | 0.002         | 0.002       | _             | _           | 150        |
|            | 200         | 0.002         | 0.002       | _             | _           | 0.002         | 0.002       | _             | _           | 200        |
|            | 150         | 0.006         | 0.006       | _             | _           | 0.006         | 0.006       | _             | _           | 150        |
| URS2602    | 200         | 0.008         | 0.008       | _             | _           | 0.008         | 0.008       | _             | _           | 200        |
|            | 250         | 0.009         | 0.009       | _             | _           | 0.009         | 0.010       | _             | _           | 250        |
|            | 300         | 0.011         | 0.011       | _             | _           | 0.011         | 0.011       | _             | _           | 300        |
|            | 150         | 0.016         | _           | 0.016         | 0.016       | 0.017         | _           | _             | _           | 150        |
|            | 200         | 0.020         | _           | 0.019         | 0.020       | 0.021         | _           | 0.020         | 0.021       | 200        |
| URS3305    | 300         | 0.028         | 0.030       | 0.027         | 0.028       | 0.029         | 0.031       | 0.027         | 0.029       | 300        |
|            | 400         | 0.036         | 0.038       | 0.035         | 0.036       | 0.036         | 0.039       | 0.035         | 0.036       | 400        |
|            | 500         | 0.043         | 0.045       | 0.042         | 0.043       | 0.044         | 0.046       | 0.043         | 0.044       | 500        |
|            | 600         | 0.051         | 0.053       | 0.050         | 0.051       | 0.052         | 0.054       | 0.050         | 0.052       | 600        |
|            | 150         | 0.022         | 0.030       | 0.018         | 0.022       | 0.025         | 0.035       | 0.020         | 0.025       | 150        |
|            | 200         | 0.026         | 0.034       | 0.022         | 0.026       | 0.029         | 0.039       | 0.023         | 0.029       | 200        |
| URS3310    | 300         | 0.034         | 0.041       | 0.030         | 0.034       | 0.036         | 0.046       | 0.031         | 0.036       | 300        |
|            | 400         | 0.041         | 0.049       | 0.038         | 0.041       | 0.044         | 0.054       | 0.039         | 0.044       | 400        |
|            | 500         | 0.049         | 0.057       | 0.045         | 0.049       | 0.052         | 0.062       | 0.046         | 0.052       | 500        |
|            | 600         | 0.056         | 0.064       | 0.053         | 0.057       | 0.059         | 0.070       | 0.055         | 0.060       | 600        |
|            | 340         | 0.179         | 0.202       | 0.169         | 0.182       | 0.187         | 0.217       | 0.174         | 0.192       | 340        |
|            | 440         | 0.218         | 0.241       | 0.208         | 0.220       | 0.225         | 0.256       | 0.213         | 0.231       | 440        |
|            | 540         | 0.257         | 0.279       | 0.246         | 0.259       | 0.264         | 0.295       | 0.252         | 0.269       | 540        |
| URS4610    | 640         | 0.295         | 0.318       | 0.285         | 0.298       | 0.303         | 0.333       | 0.290         | 0.308       | 640        |
|            | 740         | 0.334         | 0.357       | 0.324         | 0.337       | 0.342         | 0.372       | 0.329         | 0.347       | 740        |
|            | 840         | 0.373         | 0.396       | 0.363         | 0.375       | 0.380         | 0.411       | 0.367         | 0.383       | 840        |
|            | 940         | 0.412         | 0.435       | 0.402         | 0.414       | 0.419         | 0.450       | 0.406         | 0.422       | 940        |
|            | 340         | 0.247         | 0.339       | 0.207         | 0.258       | 0.278         | 0.399       | 0.227         | 0.298       | 340        |
|            | 440         | 0.286         | 0.377       | 0.246         | 0.296       | 0.317         | 0.438       | 0.266         | 0.337       | 440        |
|            | 540         | 0.325         | 0.416       | 0.284         | 0.335       | 0.355         | 0.477       | 0.305         | 0.376       | 540        |
| URS4620    | 640         | 0.364         | 0.455       | 0.323         | 0.374       | 0.394         | 0.516       | 0.344         | 0.414       | 640        |
|            | 740         | 0.403         | 0.494       | 0.362         | 0.413       | 0.433         | 0.555       | 0.382         | 0.453       | 740        |
|            | 840         | 0.441         | 0.534       | 0.402         | 0.451       | 1.523         | 1.756       | 0.417         | 0.482       | 840        |
|            | 940         | 0.480         | 0.572       | 0.441         | 0.490       | 1.646         | 1.879       | 0.456         | 0.521       | 940        |
|            | 980         | 1.462         | 1.635       | _             | _           | 1.523         | 1.756       | _             | _           | 980        |
|            | 1080        | 1.585         | 1.757       | _             | _           | 1.646         | 1.879       | _             | _           | 1080       |
| URS5520    | 1180        | 1.707         | 1.880       | _             | _           | 1.768         | 2.001       | _             | _           | 1180       |
|            | 1280        | 1.830         | 2.002       | _             | _           | 1.891         | 2.124       | _             | _           | 1280       |
|            | 1380        | 1.953         | 2.125       | _             | _           | 2.013         | 2.246       | _             | _           | 1380       |

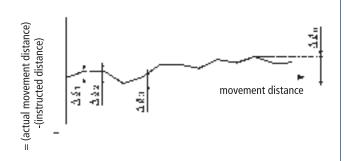

[A], [B], [C], [D] Represents carriage option.

#### **ACCURACY STANDARDS**

#### **Positioning Repeatability:**

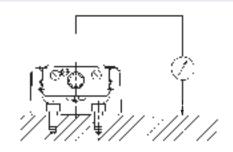
Establish an arbitrary point. From one end, position the inner block at this point and measure the stop position. Repeat the positioning and measure the stop position. Repeat the positioning and measurement process 7 times. Repeat the same process with respect to the established set point a the midpoint and near both ends of travel. Take the maximum measurement and divide the maximum difference by 2 and indicate it with either a positive or negative sign as the test result.

**IDC** 




Positioning Repeatability =  $\pm 1/2$  {(Maximum value of  $\mathcal{L}$  n)-Minimum value of  $\mathcal{L}$  n)}

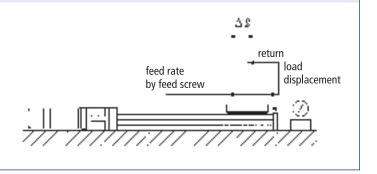
#### **Positioning Accuracy:**


Positioning is performed in only one direction and the resulting position is set as the reference measurement point. Calculate the difference between the length of actual travel and the commanded travel length. continuing in the same direction (without returning to the start point) repeat this process randomly several times until reaching limit of full stroke. Express the accuracy by the absolute maximum difference.

Positioning Accuracy =  $(\Delta \mathcal{Q} \text{ n})$ max



#### **Running Parallelism:**


Making sure that the surface plate is absolutely flat. Use the test indicator as shown in at the right, run the block over the entire length of travel and use the maximum difference in readings as the test results.



#### Backlash:

Use the feed screw to move the block a little. Take the text indicator reading and make it the reference point. While in this position, load the block in the same direction without using the feed screw. Release the load and read the return. Calculate the difference between the reference point. Repeat the same process at the midpoint and near both ends. Use the maximum difference as the test result.

Backlash =  $(\Delta \mathcal{L})$ max



DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and

#### **RATED LIFE**

To obtain the rated life of the URS actuator, complete the following life calculation equations for the Guide portion (A) and the Ball Screw / Support Bearing portion (B) and use the minimum value as your rated life.

#### A. Life of the Guide

Life of the guide is calculated as follows:

#### equation (1)

$$L_G = \left(\frac{f_C}{f_W} \cdot \frac{C}{P_T}\right)^3 .50$$

L<sub>G</sub>: Life in distance (Km)

Fc: Contact coefficient (See Table 1)

Fw: Load coefficient (See Table 2)

C: Basic dynamic rating (N)

P: Calculated load carried by single block (N)

#### A-1 Calculation of Pt

To calculate the life by using equation (1) for  $P_T$ , it is necessary to obtain theoretical load on single carriage by taking the actual moment load and other factors into consideration. When high acceleration or short stroke motion is present,  $P_T$  should be calculated with acceleration in consideration. This calculation for acceleration is performed with the mass carried by the URS actuator.

To obtain  $P_T$ , calculate each load at uniform motion, acceleration motion, and deceleration motion. The average value is  $P_T$ .

| Table 1 Contact coefficient (fc)             |                          |
|----------------------------------------------|--------------------------|
| number of blocks to<br>be mounted on an axis | contact coefficient (fc) |
| 1                                            | 1                        |
| 2                                            | 0.81                     |


| Table 2 Load coefficient (fw) |                |                       |  |  |  |
|-------------------------------|----------------|-----------------------|--|--|--|
| Operati                       | ng condition   | Load coefficient (fw) |  |  |  |
| vibration                     | speed          |                       |  |  |  |
| none                          | 5m/min or less | 1.0 ~ 1.5             |  |  |  |
| minor                         | 0m/min or less | 1.5 ~ 2.0             |  |  |  |
| major                         | m/min or more  | 2.0 ~ 3.5             |  |  |  |

| Table 3 Equivalent coefficient of the moment |                        |                        |                         |  |  |
|----------------------------------------------|------------------------|------------------------|-------------------------|--|--|
|                                              | kp                     | ky                     | kr                      |  |  |
| URS20**A                                     | 2.16 x10 <sup>-1</sup> | 1.82 x10 <sup>-1</sup> | 7.84 x10 <sup>-2</sup>  |  |  |
| URS20**B                                     | 3.56 x10 <sup>-2</sup> | 2.99 x10 <sup>-2</sup> | 3.92 x10 <sup>-2</sup>  |  |  |
| URS26**A                                     | 1.41 x10 <sup>-1</sup> | 1.18 x10 <sup>-1</sup> | 5.85 x10 <sup>-2</sup>  |  |  |
| URS26**B                                     | 2.34 x10 <sup>-2</sup> | 1.96 x10 <sup>-2</sup> | 2.92 x10 <sup>-2</sup>  |  |  |
| URS33**A                                     | 1.18 x10 <sup>-1</sup> | 9.90 x10 <sup>-2</sup> | 4.84 x 10 <sup>-2</sup> |  |  |
| URS33**B                                     | 1.96 x10 <sup>-2</sup> | 1.65 x10 <sup>-2</sup> | 2.42 x10 <sup>-2</sup>  |  |  |
| URS33**C                                     | 2.36 x10 <sup>-1</sup> | 2.02 x10 <sup>-1</sup> | 4.83 x10 <sup>-2</sup>  |  |  |
| URS33**D                                     | 3.93 x10 <sup>-2</sup> | 3.37 x10 <sup>-2</sup> | 2.41 x10 <sup>-2</sup>  |  |  |
| URS46**A                                     | 7.87 x10 <sup>-2</sup> | 6.61 x10 <sup>-2</sup> | 3.19 x10 <sup>-2</sup>  |  |  |
| URS46**B                                     | 1.31 x10⁻²             | 1.10 x10 <sup>-2</sup> | 1.60 x10 <sup>-2</sup>  |  |  |
| URS46**C                                     | 1.57 x10 <sup>-1</sup> | 1.33 x10 <sup>-1</sup> | 3.19 x10 <sup>-2</sup>  |  |  |
| URS46**D                                     | 2.62 x10 <sup>-2</sup> | 2.22 x10 <sup>-2</sup> | 1.60 x10 <sup>-2</sup>  |  |  |
| URS55**A                                     | 6.75 x10 <sup>-2</sup> | 5.69 x10 <sup>-2</sup> | 2.75 x10 <sup>-2</sup>  |  |  |
| URS55**B                                     | 1.12 x10 <sup>-2</sup> | 9.48 x10 <sup>-3</sup> | 1.38 x10 <sup>-2</sup>  |  |  |

#### i) At uniform motion (P<sub>TC</sub>)

#### equation (2)

$$P_{TC} = \left(\frac{1}{n} \cdot W\right) + \left(kp \cdot Mp\right) + \left(ky \cdot My\right) + \left(kr \cdot Mr\right)$$



#### ii) At uniform motion (P<sub>T</sub>a)

#### equation (3)

$$P_{Ta} = \frac{1}{n} \cdot W + kp \left( Mp + m \cdot \alpha_a \cdot Z \right) + ky \left( My + m \cdot \alpha_a \cdot X \right) + kr \cdot Mr$$

However, when the value of (M<sub>P</sub>+m  $.\alpha$ a.Z), (M<sub>V</sub> +m $.\alpha$ a.X) is negative, use a value of zero.

#### iii) At deceleration motion (P<sub>T</sub>d)

#### equation (4)

$$P_{Td} = \frac{1}{n} \cdot W + kp \left( Mp + m \cdot - \alpha_d \cdot Z \right) + ky \left( My + m \cdot - \alpha_a \cdot X \right) + kr \cdot Mr$$

However, when the value of (M<sub>p</sub>+m  $\cdot$  -  $\alpha$ a·Z), (M<sub>y</sub>+m  $\cdot$  -  $\alpha$ a·X) is negative, use a value of zero.

P<sub>To</sub>: Calculated load carried by single block at uniform motion (N)

 $P_{Ta}$ : Calculated load carried by single block at acceleration motion (N)

 $P_{Td}$ : Calculated load carried by single block at deceleration motion (N)

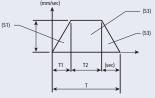
n: Number of carriages(s) on URS actuator

W: Load(N

M: Mass carried by the actuator

α: Acceleration (m/sec²)

lphad: Deceleration (m/sec $^2$ )


- X: Distance from the center of URS Actuator to center of gravity of the mass (MM)
- Z: Distance from the center or ball screw in URS actuator to the center of gravity of the mass (mm)
- kp: Equivalent coefficient of the moment at pitching direction (see Table 3)
- ky: Equivalent coefficient of the moment at yawing direction (See Table 3)
- kr: Equivalent coefficient of the moment at rolling direction (See Table 3)
- Mp: Load moment at pitching direction (Nmm)
- My: Load moment at yawing direction (Nmm)
- Mr: Load moment at rolling direction (Nmm)

Using the above factors to calculate average load, obtain the theoretical load carried by single carriage ( $P_{\tau}$ ).

#### equation (5)

$$P_{T} = \sqrt[3]{\frac{1}{(S1 + S2 + S3)}(P_{Ta}^{3} \cdot S1 + P_{Tc}^{3} \cdot S2 + P_{Td}^{3} \cdot S3)}$$

Figure (1)



- P<sub>T</sub>: Calculated load carried by single carriage (N)
- 1: Travel distance at acceleration motion (mm) (See Fig. 1)
- S1: Travel distance at uniform motion (mm) (See Fig. 1)
- S1: Travel Distance at decelerating motion (mm) (See Fig. 1)
- $P_{Ta}$ : Calculated load carried by single carriage at acceleration motion (N)—Equation (3)
- $P_{\pi}$ : Calculated load carried by single carriage at uniform motion (N)—Equation (2)
- $P_{Td}$ : Calculated load carried by single carriage at deceleration motion (N)— Equation (4)
- **B. Life of the Ball Screw and Support Bearing Calculations** of life for Ball Screw and Support Bearing are performed by common equation as introduced hereunder. Compare the dynamic load rating of Ball Screw and that of Support Bearing and use the lesser value for life calculation.

#### equation (6)

$$L_a = \left(\frac{1}{f_W} \cdot \frac{Ca \ or \ Cb}{P_a}\right)^3 \cdot \gamma$$

- La: Life in travel distance (km)
- Fg: Load coefficient (See Table 2)
- Ca: Basic Dynamic load rating of ball screw (N)
- Cb: Basic dynamic load rating of support bearing (N)
- Pa: Load at axis direction (N)
- γ: Lead of Ball Screw (mm)

#### B-1. Calculation of Pa

To calculate life by using equation (6), perform calculation for Pa with acceleration in consideration. Calculate the load at axis direction for each case at uniform motion, acceleration motion, and deceleration motion. Then obtain the average load of Pa.

#### i) At uniform motion (Pac)

#### equation (7)

$$P_{ac} = \mu \cdot W + F + f_b \cdot n$$

#### ii) At acceleration motion (Paa)

#### equation (8)

$$P_{ac} = \mu \cdot W + F + f_b \cdot n + (m + m_b \cdot n) \alpha_a$$

#### iii) At acceleration motion (Pad)

#### equation (9)

$$P_{ad} = \mu \cdot W + F + f_b \cdot n - (m + m_b \cdot n) \alpha_d$$

- Pac: Basic load rating at axis direction at uniform motion (N)
- Paa: Basic load rating at axis direction at acceleration motion (N)
- Pad: Basic load rating at axis direction at deceleration motion (N)
- μ: Frictional coefficient (0.006)
- W: Load applied on block (N)
- F: External force (load) on axis direction (N)
- fb: Sliding resistance of single carriage (N) (See Table S-2)
- n: Number of carriage(s) on URS actuator
- m: Mass carried by the actuator (Kg)
- m<sub>b</sub>: Mass of the carriage of URS actuator (kg) (See "Moving Mass" specifications on page 4-5)
- α: Acceleration (m/sec<sup>2</sup>)
- α: Deceleration (m/sec²)

| Table 4 Sliding resistance of single black (fb) |                     |                           |  |  |  |
|-------------------------------------------------|---------------------|---------------------------|--|--|--|
|                                                 | (Rolling resistance | + Seal resistance) Unit:N |  |  |  |
|                                                 | Commercial grade    | Precision grade (P)       |  |  |  |
| URS20                                           | 2.3                 | 4.9                       |  |  |  |
| URS26                                           | 5.4                 | 9.8                       |  |  |  |
| URS33                                           | 4.4                 | 10.2                      |  |  |  |
| URS46                                           | 7.4                 | 13.3                      |  |  |  |
| URS55                                           | 9.0                 | 16.0                      |  |  |  |

Hence, the average axis directional load (P) would be obtained.

#### equation (10)

$$P_{a} = \sqrt[3]{\frac{1}{(S1+S2+S3)}} (|P_{aa}|^{3} \cdot S1 + |P_{ac}|^{3} \cdot S2 + |P_{ad}|^{3} \cdot S3)$$

- Pa: Average axis directional load (N)
- S1: Travel distance at acceleration motion (mm) (See Fig. 1)
- S2: Travel distance at uniform motion (mm) (See Fig. 1)
- S3: Travel distance at deceleration motion (mm) (See Fig. 1)
- Paa: Axis direction load at acceleration motion (N) Equation (8)
  Pac: Axis direction load at uniform motion (N) Equation (7)
- Pad: Axis directional load at deceleration motion (N) Equation (9)

## PART NUMBERING/ORDERING INFORMATION

| Base Unit URS20 | Ballscrew Lead  01 2           | Carriage<br>Type A 3 | Rail<br>Length  100                           | Grade P 5   | Motor or<br>Motor Flange<br>X17                                                                                                                                         | Cover Option  H | Sensor<br>Option S 8 | Surface & Lube Options  GKRD  9 |
|-----------------|--------------------------------|----------------------|-----------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|---------------------------------|
| URS20           | 01<br>05                       | A<br>B               | 100<br>150<br>200                             | (none)<br>P | X16<br>X17<br>T12<br>T12EM<br>T12EMK<br>BK11                                                                                                                            | (none)<br>H     | (none)<br>S          | (none)<br>GK<br>GKRD            |
| URS26 AVAILAE   | URS26 AVAILABLE CONFIGURATIONS |                      |                                               |             |                                                                                                                                                                         |                 |                      |                                 |
| URS26           | 02<br>05                       | A<br>B               | 150<br>200<br>250<br>300                      | (none)<br>P | X16<br>X17<br>T12<br>T12EM<br>T12EMK<br>BK11                                                                                                                            | (none)<br>H     | (none)<br>S          | (none)<br>GK<br>RD<br>GKRD      |
| URS33 AVAILAE   | BLE CONFIGURAT                 | TIONS                |                                               |             |                                                                                                                                                                         |                 |                      |                                 |
| URS33           | 05<br>10                       | A<br>B<br>C<br>D     | 150<br>200<br>300<br>400<br>500<br>600        | (none)<br>P | X16<br>X17<br>X23<br>T12<br>T12EMK<br>T12EMK<br>T22T<br>T22TEMK<br>T22YEMK<br>T22VEMK<br>T22VEMK<br>BK11<br>BK22<br>BK22B<br>BK22S<br>BK22S                             | (none)<br>H     | (none)<br>S          | (none)<br>GK<br>RD<br>GKRD      |
| URS46 AVAILAE   | BLE CONFIGURAT                 | TIONS                |                                               |             |                                                                                                                                                                         |                 |                      |                                 |
| URS46           | 10<br>20                       | A<br>B<br>C<br>D     | 340<br>440<br>540<br>640<br>740<br>840<br>940 | (none)<br>P | X23<br>T22T<br>T22TEM<br>T22TEMK<br>T22V<br>T22VEMK<br>BK22<br>BK22B<br>BK22B<br>BK22S<br>BK22S                                                                         | (none)<br>H     | (none)<br>S          | (none)<br>GK<br>RD<br>GKRD      |
| URS55 AVAILAE   | BLE CONFIGURAT                 | TIONS                |                                               |             |                                                                                                                                                                         |                 |                      |                                 |
| URS55           | 20                             | A<br>B               | 980<br>1080<br>1180<br>1280<br>1380           | (none)<br>P | X23<br>X34<br>T22T<br>T22TEM<br>T22TEMK<br>T22VEMK<br>T22VEMK<br>T32TEMK<br>T32TEMK<br>T32YEMK<br>T32VEMK<br>BK22<br>BK22B<br>BK32B<br>BK32B<br>BK32B<br>BK32B<br>BK32B | (none)<br>H     | (none)<br>S          | (none)<br>GK<br>RD<br>GKRD      |

### **CONFIGURATION GUIDE**

| 1. Base Unit |                                            |
|--------------|--------------------------------------------|
| URS20        | Base rail profile = 20mm tall x 40mm wide  |
| URS26        | Base rail profile = 26mm tall x 50mm wide  |
| URS33        | Base rail profile = 33mm tall x 60mm wide  |
| URS46        | Base rail profile = 46mm tall x 86mm wide  |
| URS55        | Base rail profile = 55mm tall x 100mm wide |

**IDC** 

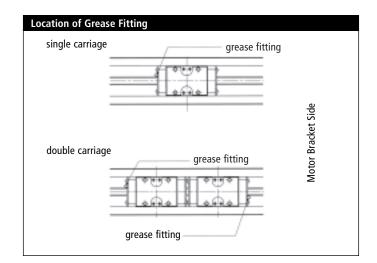
| 2. Ballscrew Lead |                     |  |  |  |  |
|-------------------|---------------------|--|--|--|--|
| 01                | 1mm lead ballscrew  |  |  |  |  |
| 02                | 2mm lead ballscrew  |  |  |  |  |
| 05                | 5mm lead ballscrew  |  |  |  |  |
| 10                | 10mm lead ballscrew |  |  |  |  |
| 20                | 20mm lead ballscrew |  |  |  |  |

| 3. Carriage Type |                                 |  |
|------------------|---------------------------------|--|
| Α                | Single long (standard) carriage |  |
| В                | Dual long (standard) carriages  |  |
| С                | Single short carriage           |  |
| D                | Dual short carriages            |  |

| 4. Rail Leng    | yth                                          |
|-----------------|----------------------------------------------|
| Specified in mm | Refer to Specifications for allowable travel |

| 5. Grade |                  |
|----------|------------------|
| (none)   | Commercial grade |
| P        | Precision grade  |

| 6. Motor or | Motor Flange                                                      |  |  |  |  |  |
|-------------|-------------------------------------------------------------------|--|--|--|--|--|
| X16         | Motor flange for 16 Frame motor                                   |  |  |  |  |  |
| X17         | Motor flange for 17 Frame motor                                   |  |  |  |  |  |
| X23         | Motor flange for 23 Frame motor                                   |  |  |  |  |  |
| X34         | Motor flange for 34 Frame motor                                   |  |  |  |  |  |
| T12         | Stepper motor, 17 Frame                                           |  |  |  |  |  |
| T12EM       | Stepper motor, 17 Frame with 500 line encoder                     |  |  |  |  |  |
| T12EMK      | Stepper motor, 17 Frame with 1000 line encoder                    |  |  |  |  |  |
| T22T        | Stepper motor, 23 Frame wired in series                           |  |  |  |  |  |
| T22TEM      | Stepper motor, 23 Frame wired in series, with 500 line encoder    |  |  |  |  |  |
| T22TEMK     | Stepper motor, 23 Frame wired in series, with 1000 line encoder   |  |  |  |  |  |
| T22V        | Stepper motor, 23 Frame wired in parallel                         |  |  |  |  |  |
| T22VEM      | Stepper motor, 23 Frame wired in parallel, with 500 line encoder  |  |  |  |  |  |
| T22VEMK     | Stepper motor, 23 Frame wired in parallel, with 1000 line encoder |  |  |  |  |  |
| T32T        | Stepper motor, 34 Frame wired in series                           |  |  |  |  |  |
| T32TEM      | Stepper motor, 34 Frame wired in series, with 500 line encoder    |  |  |  |  |  |
| T32TEMK     | Stepper motor, 34 Frame wired in series, with 1000 line encoder   |  |  |  |  |  |
| T32V        | Stepper motor, 34 Frame wired in parallel                         |  |  |  |  |  |
| T32VEM      | Stepper motor, 34 Frame wired in parallel, with 500 line encoder  |  |  |  |  |  |
| T32VEMK     | Stepper motor, 34 Frame wired in parallel, with 1000 line encoder |  |  |  |  |  |
| BK11        | Brushless servo motor, 16 Frame with encoder                      |  |  |  |  |  |
| BK22        | Brushless servo motor, 23 Frame with encoder                      |  |  |  |  |  |
| BK22B       | Brushless servo motor, 23 Frame with encoder & brake              |  |  |  |  |  |
| BK22S       | Brushless servo motor, 23 Frame with SFD feedback                 |  |  |  |  |  |
| BK22SB      | Brushless servo motor, 23 Frame with SFD feedback and brake       |  |  |  |  |  |
| BK32        | Brushless servo motor, 34 Frame with encoder                      |  |  |  |  |  |
| BK32B       | Brushless servo motor, 34 Frame with encoder & brake              |  |  |  |  |  |


| 7. Cover Option |                                             |  |
|-----------------|---------------------------------------------|--|
| (none)          | No cover provided                           |  |
| С               | Cover provide with auxiliary carriage plate |  |

| 8. Sensor Option |                                                  |  |
|------------------|--------------------------------------------------|--|
| (none)           | No cover provided                                |  |
| Н                | Hard cover provide with auxiliary carriage plate |  |

| 9. Surface Treatment & Lube Options |                                         |  |
|-------------------------------------|-----------------------------------------|--|
| (none)                              | No additional options provided          |  |
| GK                                  | Cleanroom (low-particulate) lubrication |  |
| RD                                  | Raydent treatment of rail surfaces      |  |
| GKRD                                | GK & RD options (described above)       |  |

#### **LUBRICATION AND OPERATING TEMPERATURE**

- The URS contains a lithium-soap based grease. Apply similar grade of grease for lubrication as required depending on your terms of operation.
- Use grease fitting to lubricate the guide block. For ball screw apply grease directly to surface of screw shaft.
- Unless otherwise instructed, a grease fitting is located as shown.
- The recommended ambient working temperature is 80°C or lower.
   For configurations with the limit sensor option, the maximum recommended working temperature is 55°C.



DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose.It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

540 633 • 3400



### **New Name, Established Brands**

Danaher Motion's wide range of motion control systems and components offer customers an unprecedented choice in selecting the right solution to match their particular application requirements. Our product innovations have been improving the efficiency and productivity of complex manufacturing operations for over 60 years through trusted brand names such as Dover, Kollmorgen, Pacific Scientific, Portescap and Thomson in industries as diverse as semiconductor, aerospace and defense, mobile-off-highway, packaging, medical and robotics.

In addition, Danaher Motion, through Motion Engineering (MEI), offers powerful integrated motion control solutions with its industry-leading, multi-axis motion platforms and SynqNetÆ communications network for ultra-reliable machine performance. From software and controller, through the communications network to drives and I/O devices, to mechanical and electro-mechanical products, Danaher Motion differentiates itself in the marketplace by designing standard and custom solutions to satisfy the most demanding application requirements.

Our growing family of leading motion control products and application expertise tells only half the story. With a worldwide service and support infrastructure, our field service engineers and support teams are available to assist whenever they are needed. It is part of Danaher Corporation's unrelenting focus on its customer. That's why more and more design engineers are turning to Danaher Motion to meet their motion control requirements.





DANAHER MOTION is a trademark.

Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application.

©2004 Danaher Motion. Inove 10K JAH/nSight 072304 200406-17 SMSA-05.124-062304-X

| FOR IMMEDIATE ASSISTANCE: |                                          |                              |            |                               |                      |
|---------------------------|------------------------------------------|------------------------------|------------|-------------------------------|----------------------|
| Internet:                 | www.DanaherMotion.com                    |                              | In Europe: | Phone:                        | +46 (0) 44 24 67 00  |
|                           |                                          |                              |            | Fax:                          | +46 (0) 44 24 40 85  |
| In USA, Canada            | Phone:                                   | 1-540-633-3400               |            | E-mail:                       | helpdesk@tollo.com   |
| or Mexico:                | Fax:                                     | 1-540-639-4162               | or write:  | Danaher Motion                |                      |
|                           | E-mail:                                  | DMAC@danahermotion.com       |            | Tollo Linear AB               |                      |
|                           | Literature:                              | litrequest@danahermotion.com |            | Box 9053                      |                      |
| or write:                 | Danaher Mo                               | tion                         |            | SE-291 09 Kristianstad Sweden |                      |
|                           | 203A West Rock Road                      |                              |            |                               |                      |
|                           | Radford, VA                              | 24141 USA                    | or         | Phone:                        | +49 (0) 70 22 504-0  |
|                           |                                          |                              |            | Fax:                          | +49 (0) 70 22 541-68 |
| In UK:                    | Phone:                                   | 0800 975 1000                |            |                               |                      |
|                           | Sales Fax:                               | 0800 975 1001                | or write:  | Danaher Linear Gmb            | H                    |
|                           | E-mail: LMSEurope@danahermotion.com      |                              |            | Nürtinger Strasse 70          |                      |
| or write:                 | Danaher Linear Motion Systems            |                              |            | D-72649 Wolfschlugen Germany  |                      |
|                           | Fishleigh Road, Roundswell Business Park |                              |            |                               |                      |
|                           | Barnstaple                               |                              | Elsewhere: | Phone:                        | 1 (516) 883-8937     |
|                           | EX31 3UD UK                              |                              |            | Fax:                          | 1 (516) 883-7109     |
| Catalogue request:        | catalogues@                              | danahermotion.com            |            |                               |                      |